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Ferromagnetic phase transition in random Potts spin chains

Jian-Cheng Lin and Philip L. Taylor
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

Rafael Rangel

Instituto Venezolano de Investigaciones Cientificas, Apartado 21827, Caracas 1020-A, Venezuela
(Received 8 June 1992)

We study the ferromagnetic phase transition in a model consisting of one-dimensional three-state
Potts spin chains with random intrachain couplings and comparatively weak ferromagnetic interchain
couplings. Mean-field theory is employed to decouple approximately the interchain couplings. The
transfer-matrix method is then used to study the resulting effectively one-dimensional random-bond
Potts model. The free energy as a function of the ferromagnetic order is calculated numerically and
a first-order ferromagnetic-paramagnetic phase transition is found over a wide range of degree of

randomness.
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I. INTRODUCTION

There has recently been renewed interest in the prob-
lem of interacting Ising spins in the presence of disorder
[1-5]. Some of this activity is prompted by the existence
of experimental systems that appear to be well described
by a disordered spin-% Ising model [6,7]. A related prob-
lem is found in the study of phase transitions in ferroelec-
tric random copolymers, an example of which is the sys-
tem in which vinylidene fluoride and tetrafluoroethylene
are combined in a ratio of from 60% to 80% vinylidene
fluoride [8]. To describe the conformations of linear poly-
mers having a carbon-chain backbone, an isomeric-state
model is commonly adopted in which the torsional angle
of a triad of carbon-carbon bonds can take on only three
possible values. Such a system can then be modeled as an
anisotropic three-state Potts model in three dimensions.

In this paper we study a.simple analog of this sys-
tem, and introduce a mean-field approximation to re-
duce the three-dimensional problem to an effectively
one-dimensional system with long-range interactions. In
practical application to random copolymers the justifi-
cation for this step lies in the fact that the intrachain
covalent bonds are appreciably stronger than the inter-
chain van der Waals interactions. This model is presented
in Sec. II, where a three-dimensional anisotropic three-
state random-bond Potts model is described. Mean-field
theory for this Potts model is introduced in Sec. III.
In Sec. IV, the resulting effectively one-dimensional
random-bond Potts model is studied via the transfer-
matrix approach. In Sec. V, we calculate numerically
the free energy as a function of the ferromagnetic order
for various temperatures and compositions of random-
ness. According to the numerical results, a first-order
ferromagnetic-paramagnetic phase transition is found
over a wide range of compositions. Finally, we summarize
and discuss our results in Sec. VI.

II. MODEL

We start with the following Hamiltonian of a three-
dimensional anisotropic three-state random-bond Potts
model:

H=— Z stz . Sj - Z J;Jsz . Sj ) (1)

intra(i,j) inter(4,5)

where i and j represent coordinates of three-dimensional
cubic lattice sites. S; is the Potts spin which is a
unit vector allowed to have three orientations (0, 27/3,
and 47 /3) on the plane perpendicular to the Potts spin
chains. The quantity S; - S; is the scalar product of
the two unit spin vectors and the J;; represent the
nearest-neighbor intrachain couplings and are random
variables satisfying the same independent distribution
p(Jij) = p6(Ji; — J) + (1 — p)6(Ji; + J). Each intra-
chain coupling thus has probability p to be a ferromag-
netic coupling and probability 1 — p to be antiferromag-
netic. The J/; represent the nearest-neighbor interchain
couplings an(i are assumed to be uniform and of ferro-
magnetic type, so that Jj; = J' > 0. We assume weak
interchain coupling, and so we have J’ <« J. The sum
> intra(i,j) (Dinter(i,;)) 18 the sum over all the nearest in-
trachain (interchain) neighbors. The ferromagnetic order
is then given by the thermal and disorder average of the
Potts spin:

m=@v (2)

where () is the thermal average and the bar represents
the average over the random variables J;;.

In the model defined by the Hamiltonian [Eq. (1)] the
intrachain couplings are random, but the interchain cou-
plings are not. This model has possible application to
the first-order ferroelectric-paraelectric phase transition
in random copolymers of vinylidene fluoride and tetraflu-
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oroethylene [6-8]. The model is still not accessible to
exact solution, and so we now turn to an approximate
method, in which the term J}; is replaced by an infinite-
range mean-field contribution.

III. MEAN-FIELD APPROXIMATION

In this section we will use the mean-field approxima-
tion to find a mean-field free energy as a function of the
order parameter m from the Hamiltonian [Eq. (1)]. The
ferromagnetic order of the system is determined by find-
ing the value of m that minimizes the free energy.

Let f be the free energy per spin of the system given
by Eq. (1). From the well-known inequality (e%) > e{®,
one can find that

foup = jlv'(H)Heff +feﬁ' - _];'<Heﬂ">Heff y (3)

N

where fyp is an upper bound of the free energy f, N is the
total number of Potts spins, Heg is an effective Hamilto-
nian produced by a mean-field approximation, feg rep-
resents the free energy of the system with Heg, ()H.,
means the thermal average with respect to the effective
Hamiltonian, and a bar stands for the average over the
random variable J;;. Choosing the effective Hamiltonian
appropriately will give a useful estimate of the free energy
f. We will use a mean-field consideration to introduce
an effective Hamiltonian and then find an upper bound
free energy (fup) of the system. This mean-field free en-
ergy is found to be a function of an order parameter m.
Minimizing the mean-field free energy with respect to the
order parameter m then yields the mean-field magneti-
zation of the system.

Since the interchain coupling constant J’ is much
smaller than the intrachain coupling constant, it is rea-
sonable to make an approximation for the terms involving
all the interchain interactions in the Hamiltonian given
by Eq. (1). We suppose that the system has a magneti-
zation along the z direction, so that

m=mz, (4)

where z is a unit vector along the 0 direction in the
plane perpendicular to the Potts spin chain, and m is
the ferromagnetic order parameter. This spontaneous
broken symmetry is assumed to produce a uniform field,
h = h(m, K, J’, p)z, acting on each individual Potts spin
S;. The mean field h(m, K, J/, p) is a function of the fer-
romagnetic order parameter m, temperature parameter
K (K = J/T with temperature 7' and unit Boltzmann
constant), interchain coupling J’, and disorder parameter
p. The resulting effectively one-dimensional Hamiltonian
is then given by

Heg=~— ), JiSi-S;—h(m,K,J',p))_ Si-z,
intra(i,5) i
(®)

where the sum ), is over all the lattice sites.
From Egs. (1), (3), and (5) the mean-field free energy
is

Sfmean = fup = —2J'm? + h(m, K, J’,p)m + feff »
(6)

where m is the magnitude of the spontaneous-broken-
symmetry ferromagnetization and now satisfies the fol-
lowing mean-field equation:

m=(Si " 2)H - ()

Equation (7) for the ferromagnetic order m determines
the mean-field h(m, K, J’, p) as a function of the param-
eters m, K, J’, and p. The effective free energy is

fe = _J_VITB' In Tr exP[_ﬁHeH] s (8)

where 8 = % is the inverse temperature.

Given the couplings J and J’, the composition p, and
the temperature T, Egs. (5)—(8) indicate that the mean-
field free energy is a function of m only. The magneti-
zation can be obtained by finding the value of m that
minimizes the mean-field free energy.

Combining Eq. (7) and the minimization condition of
the mean-field free energy yields

h(m,K,J',p) =4J'm . (9)

It is important to notice that Eq. (9) is only valid at
the equilibrium state. Two approaches are possible for
calculating the magnetization. The first is to find the
minimum of the free energy, which is a function of the
order parameter m, without applying Eq. (9); the sec-
ond is to combine Egs. (7) and (9) and solve them self-
consistently. While the second approach has the advan-
tage of being easily implemented, the first one has the
advantage of yielding the free energy as a function of the
order parameter. Since the order of the transition can be
easily seen through observation of the free energy, and
since the time required for the numerical calculation is
not large, we employ the first approach in the numerical
calculation of the magnetization.

IV. TRANSFER-MATRIX ANALYSIS

The transfer-matrix technique has been widely used
in studying the one-dimensional disordered Ising spin
system [1-5]. In this section we use this technique
to study the one-dimensional random-bond three-state
Potts model in the presence of a uniformal external field
[see the Hamiltonian Heg given by Eq. (5)].

Given the one-dimensional Hamiltonian Heg, the cor-
responding 3 X 3 transfer matrix is

o3k e-3Ki—3h o-3Ki-3h
3 3
Ty = |e2K: 1 e~ 3Kx ,
e'%Ki—%’_‘ e_%Ki_%E e_%’-‘
(10)

where T4 are the two possible transfer matrices with +
representing the ferromagnetic bond and — the antiferro-
magnetic bond, where K3 = +K is the coupling strength
J divided by temperature T', and h is the effective mean
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field h(m, K, J’,p) divided by temperature. In writing
the above transfer matrix we have omitted a common
factor of eX++* which does not affect our calculation of
the magnetization m but which will be accounted for in
the calculation of the effective free energy. The transfer
matrix is arranged in a way such that the first, second,
and third columns (or rows) correspond to the 27/3, 0,
and 4 /3 orientations of the Potts spins.
We define a sequence of partition functions

ZNn+1 ZN\n
Zin+1 = Tn|Ztn | (11)
Z ny1 Zn

where T, is the random transfer matrix associated with
the nth bond and can be either T4 (with probability p)
or T_ (with probability 1 — p) depending on the type
of the associated bond. For a free boundary system the
initial partition functions are defined by

Z\0 1
Zto = 1| . (12)
Z 0 1

Since T,, is a random matrix, Eq. (11) introduces a se-
quence of random partition functions, which is a sequence
of random three-dimensional vectors. To study this se-
quence of random partition functions, let us introduce
the spherical coordinates (r, 6, ¢n) for the partition
function at a given step n, so that

sin @, cos ¢n, AN
T | cOSOp = | Zin | . (13)
sin 6,, sin @, Zn

The advantages of introducing spherical coordinates are
twofold. First, it separates the common factor r,, which
is irrelevant in the calculation of the magnetization but
on the other hand uniquely determines the effective free
energy. This permits a reduction in the dimensions of the
random partition functions from 3 to 2. Second, it uti-
lizes a symmetry preserved by the random matrix T+, re-
ducing further the dimensions of the random vector from
2 to 1. This symmetry lies in the fact that the matrices
have an invariant vector subspace which is composed of

all the vectors having the form [i ] . This then says that

pn is fixed and is equal to 1r/4.z After these consider-
ations, we find the following iteration relation between
9n+1 and Gn:

9’n+1 =g+ (911,)

e—3h [\/ie’%K* + (1 -+ e‘%Ki) tanen]

arctan
1+ v2e~ K= tan#,

If

(14)

Since all the partition functions are positive, all the an-
gles {6,} are confined in (0, m/2). Equation (14) gen-
erates a sequence of random angles {6,}. When n — oo,
they will satisfy a well-defined angle distribution func-
tion p(8) [2,4] on [0, /2], which gives the probability
density of finding 6, within (6 ,6 + df) and is deter-

mined by the iterative functions g+ and the composition
p. Analytic solutions for the angle distribution function
p(0) are, in general, not available, and so we resort to
numerical methods.

Our next step is to establish relations between the ther-
mal quantities (the magnetization m and the effective
free energy) and the angle #. One can verify that the
ferromagnetic order m satisfies

_ 1- %tanﬁltanez
1 + tan 6, tan 6,

(15)

where 6; and 6, are angles, each satisfying independently
the angle distribution function p(#). The bar indicating
the average over the random variable J;; is now replaced
by the average over the angle distribution.

To calculate the effective free energy, let us further
define

An =

Tn

(16)

It is worth noting that as far as the random variables are
concerned, A, is a function only of 6,_; and the random
coupling (Jn,n—1) associated with sites n and » — 1 on
the same chain and is given by

Tn—1

3Jp n—
A2(6p-1) = e [(1 + e~ 2T 1) sin@,_1
3Jp n—1 2
+4/2e~ 3T cos 6,,_1]

3Jn n— 2
+ [\/ie__f'f_l' sin@,,_1 + cos en_l] ,
(17)

where h is the mean field. The effective free energy can
now be found to be

fea=[-h—J(2p—-1)]-TnA(®), (18)

where A(6) is given by Eq. (17) with 6,_; replaced by
0, and the average is over both the distributions [p(J;;)
and p(8)] of the random coupling and random angle. The
terms in the square brackets in the above equation come
from the contribution of the common factor that was
extracted from the transfer matrix. Equations (6) and
(14)—(18) are our basic starting point for calculating the
free energy numerically in the next section.

V. NUMERICAL RESULTS

In this section, we present the numerical results of a
calculation of the free energy. Starting from the iterative
relation [Eq. (14)], one can generate an angle distribution
function p(6) and hence the magnetization m and the
effective free energy through Egs. (15) and (18). Finally,
the mean-field free energy can be found via Eq. (6).

For the numerical simulation we have chosen J =
5J' = 1. Figure 1 shows the mean-field free energy
as a function of the ferroelectric order parameter m for
various temperatures at a composition p = 0.9. Figure
1(a) shows that at high temperature, the only minimum
occurs at m = 0, indicating that there is no ferroelec-
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tric order. However, at low temperature, the state with
m = 0 becomes unstable, and two minima at nonzero
m (one positive and one negative) appear, implying the
existence of a ferroelectric phase. The one that has the
lowest free energy is located at positive m. There is thus
a paramagnetic-ferromagnetic phase transition when the
temperature is lowered through a certain transition tem-
perature. A careful examination of the free energy in the
vicinity of the transition temperature [Fig. 1(b)] shows
that the transition is weakly of first order.

Figure 2 shows schematically the ferromagnetic order
as a function of the temperature. When the tempera-
ture is larger than a certain temperature 73, the only
stationary point is at m = 0 which is also a minimum
and has the lowest free energy. When the temperature
is lowered below 77 but higher than the transition tem-
perature T, two more stationary points at m; ( > 0 and
unstable) and m, (> m; and metastable) appear, but
the state with m = O still has the lowest free energy.
If the temperature is further reduced to a temperature
smaller than T, and larger than another temperature 73,
the state at m, possesses the lowest free energy, leaving
other properties unchanged. Finally, if the temperature
is smaller than 75, then the state at m; becomes negative
and metastable while that at m = 0 becomes unstable,

(a)

Free Energy f(m)-f(0)

I
o

Order Parameter m

0.01
B
&= 00751 (b)
B
= ofoos
2
b5 0 25
=
5}
§ -0.5
& -0.0025

-0.005
Order Parameter m
FIG. 1. This figure shows free energy as a function of the

order parameter m at various temperatures. The composition
p is equal to 0.9. The curves correspond, from top to bottom,
to temperatures 3.5, 3.0, 2.5, 2.0, and 1.5 in (a), and 2.55,
2.50, 2.45, 2.40, and 2.35 in the expanded figure (b).

1.0
g
= /
S m,
<
N
g 2N
=
g %900 N AN
=

-0.5

Temperature T
FIG. 2. This figure shows schematically the magnetiza-

tion as a function of the temperature.

but with that at m, continuing to have the lowest free
energy. The figure also shows that the transition from the
stable branch m = 0 to the most stable branch m = m,, is
of first order in contrast with the usual Ising spin system
where the upper branch m = m, and the lower branch
m = m; are symmetric about the branch m = 0, and all
transitions are of second order.

In Fig. 3, we plot the transition temperature as a func-
tion of the composition p. Unlike the case of the usual
spin-glass system, here the ferromagnetic-paramagnetic
phase transition exists for all compositions as a conse-
quence of the mean-field approximation.

VI. CONCLUSIONS

We have studied the ferromagnetic-paramagnetic
phase transition of a three-dimensional anisotropic three-
state random-bond Potts model. Mean-field theory has
been employed to decouple the comparatively weak ferro-
electric couplings between the random Potts spin chains,
reducing the model to an effectively one-dimensional
random-bond three-state Potts model in the presence of
the uniform mean field. The symmetry of the transfer-
matrix permits us to simplify greatly the problem from
finding an angular distribution function of two spherical

w

[\S)

H
[ o N}

Transition Temperature T
o
U

0.2 0.4 0.6 0.8 1

Composition p

FIG. 3. This figure shows the transition temperature as a
function of the composition p.
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angles 6 and ¢ from which the average free energy and
magnetization may be determined. A first-order ferro-
magnetic phase transition at all compositions is found
from a numerical calculation of the free energy. As ex-
pected, the transition to the ferromagnetic phase with
positive magnetization (corresponding to the most sta-
ble branch) is of first order. The weak ferromagnetic
coupling between the random Potts spin chains prevents
the system from being a spin-glass system. The uniform
mean field adopted in this version of the theory prevents
us from finding a helical phase. A future improvement

to the present theory is planned to introduce a random
mean field.
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